\(\int \frac {x (a+b \arccos (c x))}{d-c^2 d x^2} \, dx\) [3]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 82 \[ \int \frac {x (a+b \arccos (c x))}{d-c^2 d x^2} \, dx=\frac {i (a+b \arccos (c x))^2}{2 b c^2 d}-\frac {(a+b \arccos (c x)) \log \left (1-e^{2 i \arccos (c x)}\right )}{c^2 d}+\frac {i b \operatorname {PolyLog}\left (2,e^{2 i \arccos (c x)}\right )}{2 c^2 d} \]

[Out]

1/2*I*(a+b*arccos(c*x))^2/b/c^2/d-(a+b*arccos(c*x))*ln(1-(c*x+I*(-c^2*x^2+1)^(1/2))^2)/c^2/d+1/2*I*b*polylog(2
,(c*x+I*(-c^2*x^2+1)^(1/2))^2)/c^2/d

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {4766, 3798, 2221, 2317, 2438} \[ \int \frac {x (a+b \arccos (c x))}{d-c^2 d x^2} \, dx=\frac {i (a+b \arccos (c x))^2}{2 b c^2 d}-\frac {\log \left (1-e^{2 i \arccos (c x)}\right ) (a+b \arccos (c x))}{c^2 d}+\frac {i b \operatorname {PolyLog}\left (2,e^{2 i \arccos (c x)}\right )}{2 c^2 d} \]

[In]

Int[(x*(a + b*ArcCos[c*x]))/(d - c^2*d*x^2),x]

[Out]

((I/2)*(a + b*ArcCos[c*x])^2)/(b*c^2*d) - ((a + b*ArcCos[c*x])*Log[1 - E^((2*I)*ArcCos[c*x])])/(c^2*d) + ((I/2
)*b*PolyLog[2, E^((2*I)*ArcCos[c*x])])/(c^2*d)

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 3798

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Simp[I*((c + d*x)^(m + 1)/(d*(
m + 1))), x] - Dist[2*I, Int[(c + d*x)^m*E^(2*I*k*Pi)*(E^(2*I*(e + f*x))/(1 + E^(2*I*k*Pi)*E^(2*I*(e + f*x))))
, x], x] /; FreeQ[{c, d, e, f}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 4766

Int[(((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/e, Subst[Int[(a
 + b*x)^n*Cot[x], x], x, ArcCos[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\text {Subst}(\int (a+b x) \cot (x) \, dx,x,\arccos (c x))}{c^2 d} \\ & = \frac {i (a+b \arccos (c x))^2}{2 b c^2 d}+\frac {(2 i) \text {Subst}\left (\int \frac {e^{2 i x} (a+b x)}{1-e^{2 i x}} \, dx,x,\arccos (c x)\right )}{c^2 d} \\ & = \frac {i (a+b \arccos (c x))^2}{2 b c^2 d}-\frac {(a+b \arccos (c x)) \log \left (1-e^{2 i \arccos (c x)}\right )}{c^2 d}+\frac {b \text {Subst}\left (\int \log \left (1-e^{2 i x}\right ) \, dx,x,\arccos (c x)\right )}{c^2 d} \\ & = \frac {i (a+b \arccos (c x))^2}{2 b c^2 d}-\frac {(a+b \arccos (c x)) \log \left (1-e^{2 i \arccos (c x)}\right )}{c^2 d}-\frac {(i b) \text {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{2 i \arccos (c x)}\right )}{2 c^2 d} \\ & = \frac {i (a+b \arccos (c x))^2}{2 b c^2 d}-\frac {(a+b \arccos (c x)) \log \left (1-e^{2 i \arccos (c x)}\right )}{c^2 d}+\frac {i b \operatorname {PolyLog}\left (2,e^{2 i \arccos (c x)}\right )}{2 c^2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.40 \[ \int \frac {x (a+b \arccos (c x))}{d-c^2 d x^2} \, dx=\frac {i \left (b \arccos (c x)^2+2 i b \arccos (c x) \log \left (1-e^{i \arccos (c x)}\right )+2 i b \arccos (c x) \log \left (1+e^{i \arccos (c x)}\right )+i a \log \left (1-c^2 x^2\right )+2 b \operatorname {PolyLog}\left (2,-e^{i \arccos (c x)}\right )+2 b \operatorname {PolyLog}\left (2,e^{i \arccos (c x)}\right )\right )}{2 c^2 d} \]

[In]

Integrate[(x*(a + b*ArcCos[c*x]))/(d - c^2*d*x^2),x]

[Out]

((I/2)*(b*ArcCos[c*x]^2 + (2*I)*b*ArcCos[c*x]*Log[1 - E^(I*ArcCos[c*x])] + (2*I)*b*ArcCos[c*x]*Log[1 + E^(I*Ar
cCos[c*x])] + I*a*Log[1 - c^2*x^2] + 2*b*PolyLog[2, -E^(I*ArcCos[c*x])] + 2*b*PolyLog[2, E^(I*ArcCos[c*x])]))/
(c^2*d)

Maple [A] (verified)

Time = 1.22 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.73

method result size
parts \(-\frac {a \ln \left (c^{2} x^{2}-1\right )}{2 d \,c^{2}}-\frac {b \left (-\frac {i \arccos \left (c x \right )^{2}}{2}+\arccos \left (c x \right ) \ln \left (1-c x -i \sqrt {-c^{2} x^{2}+1}\right )-i \operatorname {polylog}\left (2, c x +i \sqrt {-c^{2} x^{2}+1}\right )+\arccos \left (c x \right ) \ln \left (1+c x +i \sqrt {-c^{2} x^{2}+1}\right )-i \operatorname {polylog}\left (2, -c x -i \sqrt {-c^{2} x^{2}+1}\right )\right )}{d \,c^{2}}\) \(142\)
derivativedivides \(\frac {-\frac {a \left (\frac {\ln \left (c x -1\right )}{2}+\frac {\ln \left (c x +1\right )}{2}\right )}{d}-\frac {b \left (-\frac {i \arccos \left (c x \right )^{2}}{2}+\arccos \left (c x \right ) \ln \left (1-c x -i \sqrt {-c^{2} x^{2}+1}\right )-i \operatorname {polylog}\left (2, c x +i \sqrt {-c^{2} x^{2}+1}\right )+\arccos \left (c x \right ) \ln \left (1+c x +i \sqrt {-c^{2} x^{2}+1}\right )-i \operatorname {polylog}\left (2, -c x -i \sqrt {-c^{2} x^{2}+1}\right )\right )}{d}}{c^{2}}\) \(147\)
default \(\frac {-\frac {a \left (\frac {\ln \left (c x -1\right )}{2}+\frac {\ln \left (c x +1\right )}{2}\right )}{d}-\frac {b \left (-\frac {i \arccos \left (c x \right )^{2}}{2}+\arccos \left (c x \right ) \ln \left (1-c x -i \sqrt {-c^{2} x^{2}+1}\right )-i \operatorname {polylog}\left (2, c x +i \sqrt {-c^{2} x^{2}+1}\right )+\arccos \left (c x \right ) \ln \left (1+c x +i \sqrt {-c^{2} x^{2}+1}\right )-i \operatorname {polylog}\left (2, -c x -i \sqrt {-c^{2} x^{2}+1}\right )\right )}{d}}{c^{2}}\) \(147\)

[In]

int(x*(a+b*arccos(c*x))/(-c^2*d*x^2+d),x,method=_RETURNVERBOSE)

[Out]

-1/2*a/d/c^2*ln(c^2*x^2-1)-b/d/c^2*(-1/2*I*arccos(c*x)^2+arccos(c*x)*ln(1-c*x-I*(-c^2*x^2+1)^(1/2))-I*polylog(
2,c*x+I*(-c^2*x^2+1)^(1/2))+arccos(c*x)*ln(1+c*x+I*(-c^2*x^2+1)^(1/2))-I*polylog(2,-c*x-I*(-c^2*x^2+1)^(1/2)))

Fricas [F]

\[ \int \frac {x (a+b \arccos (c x))}{d-c^2 d x^2} \, dx=\int { -\frac {{\left (b \arccos \left (c x\right ) + a\right )} x}{c^{2} d x^{2} - d} \,d x } \]

[In]

integrate(x*(a+b*arccos(c*x))/(-c^2*d*x^2+d),x, algorithm="fricas")

[Out]

integral(-(b*x*arccos(c*x) + a*x)/(c^2*d*x^2 - d), x)

Sympy [F]

\[ \int \frac {x (a+b \arccos (c x))}{d-c^2 d x^2} \, dx=- \frac {\int \frac {a x}{c^{2} x^{2} - 1}\, dx + \int \frac {b x \operatorname {acos}{\left (c x \right )}}{c^{2} x^{2} - 1}\, dx}{d} \]

[In]

integrate(x*(a+b*acos(c*x))/(-c**2*d*x**2+d),x)

[Out]

-(Integral(a*x/(c**2*x**2 - 1), x) + Integral(b*x*acos(c*x)/(c**2*x**2 - 1), x))/d

Maxima [F]

\[ \int \frac {x (a+b \arccos (c x))}{d-c^2 d x^2} \, dx=\int { -\frac {{\left (b \arccos \left (c x\right ) + a\right )} x}{c^{2} d x^{2} - d} \,d x } \]

[In]

integrate(x*(a+b*arccos(c*x))/(-c^2*d*x^2+d),x, algorithm="maxima")

[Out]

1/2*(2*c^2*d*integrate(1/2*(e^(1/2*log(c*x + 1) + 1/2*log(-c*x + 1))*log(c*x + 1) + e^(1/2*log(c*x + 1) + 1/2*
log(-c*x + 1))*log(-c*x + 1))/(c^5*d*x^4 - c^3*d*x^2 + (c^3*d*x^2 - c*d)*e^(log(c*x + 1) + log(-c*x + 1))), x)
 - (log(c*x + 1) + log(-c*x + 1))*arctan2(sqrt(c*x + 1)*sqrt(-c*x + 1), c*x))*b/(c^2*d) - 1/2*a*log(c^2*d*x^2
- d)/(c^2*d)

Giac [F]

\[ \int \frac {x (a+b \arccos (c x))}{d-c^2 d x^2} \, dx=\int { -\frac {{\left (b \arccos \left (c x\right ) + a\right )} x}{c^{2} d x^{2} - d} \,d x } \]

[In]

integrate(x*(a+b*arccos(c*x))/(-c^2*d*x^2+d),x, algorithm="giac")

[Out]

integrate(-(b*arccos(c*x) + a)*x/(c^2*d*x^2 - d), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x (a+b \arccos (c x))}{d-c^2 d x^2} \, dx=\int \frac {x\,\left (a+b\,\mathrm {acos}\left (c\,x\right )\right )}{d-c^2\,d\,x^2} \,d x \]

[In]

int((x*(a + b*acos(c*x)))/(d - c^2*d*x^2),x)

[Out]

int((x*(a + b*acos(c*x)))/(d - c^2*d*x^2), x)